Survey of Improving Naive Bayes for Classification
نویسندگان
چکیده
The attribute conditional independence assumption of naive Bayes essentially ignores attribute dependencies and is often violated. On the other hand, although a Bayesian network can represent arbitrary attribute dependencies, learning an optimal Bayesian network classifier from data is intractable. Thus, learning improved naive Bayes has attracted much attention from researchers and presented many effective and efficient improved algorithms. In this paper, we review some of these improved algorithms and single out four main improved approaches: 1) Feature selection; 2) Structure extension; 3) Local learning; 4) Data expansion. We experimentally tested these approaches using the whole 36 UCI data sets selected by Weka, and compared them to naive Bayes. The experimental results show that all these approaches are effective. In the end, we discuss some main directions for future research on Bayesian network classifiers.
منابع مشابه
A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملIn silico prediction of anticancer peptides by TRAINER tool
Cancer is one of the causes of death in the world. Several treatment methods exist against cancer cells such as radiotherapy and chemotherapy. Since traditional methods have side effects on normal cells and are expensive, identification and developing a new method to cancer therapy is very important. Antimicrobial peptides, present in a wide variety of organisms, such as plants, amphibians and ...
متن کاملA Validation Test Naive Bayesian Classification Algorithm and Probit Regression as Prediction Models for Managerial Overconfidence in Iran's Capital Market
Corporate directors are influenced by overconfidence, which is one of the personality traits of individuals; it may take irrational decisions that will have a significant impact on the company's performance in the long run. The purpose of this paper is to validate and compare the Naive Bayesian Classification algorithm and probit regression in the prediction of Management's overconfident at pre...
متن کاملDiagnosis of Pulmonary Tuberculosis Using Artificial Intelligence (Naive Bayes Algorithm)
Background and Aim: Despite the implementation of effective preventive and therapeutic programs, no significant success has been achieved in the reduction of tuberculosis. One of the reasons is the delay in diagnosis. Therefore, the creation of a diagnostic aid system can help to diagnose early Tuberculosis. The purpose of this research was to evaluate the role of the Naive Bayes algorithm as a...
متن کاملImproving spam filtering by combining Naive Bayes with simple k-nearest neighbor searches
Using naive Bayes for email classification has become very popular within the last few months. They are quite easy to implement and very efficient. In this paper we want to present empirical results of email classification using a combination of naive Bayes and k-nearest neighbor searches. Using this technique we show that the accuracy of a Bayes filter can be improved slightly for a high numbe...
متن کاملFast and Accurate Sentiment Classification Using an Enhanced Naive Bayes Model
We have explored different methods of improving the accuracy of a Naive Bayes classifier for sentiment analysis. We observed that a combination of methods like effective negation handling, word n-grams and feature selection by mutual information results in a significant improvement in accuracy. This implies that a highly accurate and fast sentiment classifier can be built using a simple Naive B...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007